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The asymptotic effectiveness factor for the reaction between a porous solid and a 
gas is calculated. Surface area and effective diffusivity variation are taken into ac- 
count as well as temperature profiles. The isothermal effectiveness factor can be 
written in terms of the isothermal “catalytic” effectiveness factor (constant surface 
area and effective diffusivity) and a correction factor, hf. It is demonstrated that 
this correction factor is dependent on porous structure but independent on reaction 
mechanism. On the other hand, the nonisothermal effectiveness factor can be written 
in terms of the nonisothermal “catalytic” effectiveness factor, the isothermal cor- 
rection factor, hr+, and a second correction factor which takes into account the in- 
fluence of the transport coefficients variation in the Damkohler’s analogy used to 
rela.te temperature to gaseous composition. 
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NOMENCLATURE 

reaction components 
surface area of B per unit 
volume, L2/L3 
dimensionless surface area of 
B, a* = a/a, 
Arrhenius number, Ar = 
-E/W, 
stoichiometric coefficients 
molar concentration, g-mole/ 
L3 
dimensionless concentration 
of A, CA* = cA/cAs 
dimensionless concentration 
of B, cs* = c~/ci+ 
effective diffusivity of A, L2/B 
dimensionless effective dif- 
fusivity of A, DA* = DA/DA,, 
activation energy, Q/g-mole 
coefficient defined in Eq. (30) 
coefficient defined in Eq. (31) 
coefficient defined in Eq. (30) 

(-AH> 
ho 

hf 

I 
J 
lc’ 

L 

n 

P 
r 

rA* 

R 

heat of reaction, Q/g-mole 
initial generalized Thiele mod- 
ulus, 
h = L y + 1 k’a,cAs+ Oi 
0 0 

[ 2 DAO 1 
correction factor to Thiele 
modulus 
function defined in Eq. (52) 
function defined in Eq. (53) 
reaction rate constant per 
unit surface area 
dimensionless reaction rate 
constant, k’* = k’(T)/lc’(T), 
characteristic length of porous 
solid 
exponent in Eq. (34) 
coefficient in Eq. (33) 
reaction rate per unit volume, 
g-mole/L% 
dimensionless reaction rate, 
rA* = rA/rAs 

radial position of the interface 
between ash layer product and 
front of reaction zonel . L 
dimensionless radial position 
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of the interface between ash 
layer product and front of 
reaction zone, R* = RJR0 
gas constant, Q/g-mole “K 
time, 6 
temperature, “K 
dimensionless temperature, 
T’ = T/T, 
ratio of thermal conductivi- 
ties, x = XS/XF 
rectangular coordinate, L 
dimensionless rectangular co- 
ordinate, z* = z/L 

catalytic 
Auid 
isothermal 
internal 
initial value 
solid 
interface between ash layer 
product and front of reaction 
zone 
true density of solid phase 

dimensionless number, P = 
DA~( - AH)CAJM’~ 

reaction order with respect to 
A 
reaction layer thickness 
porosity 
dimensionless porosity, E* = 
d6 
porosity, Eqs. (32) and (33) 
internal effectiveness factor 
effective thermal conductivity, 
Q/L “K 
dimensionless effective ther- 
mal conductivity, A* = X/X0 
correction factor, defined in 
Eq. (50) 
coefficients defined in Eq. (48) 

INTRODUCTION 

Let us consider the reaction between the 
gas A and the porous solid B according to 

A(,, + bB(,, = C(g) + dDw. (1) 
The mathematical description of this re- 

action is given by the mass balance equa- 

tions of components A and B and the 
thermal energy balance (Fig. 1) 

V. DAVCA = TA, (2) 

and 

V. XVT = -(-AH)TA, (4) 
where the pseudo steady-state assumption 
has been applied to Eqs. (2) and (4), and 
equimolar counterdiffusion is assumed in 
Eq. (2). Pseudo steady-state assumption 
has been analyzed for the shrinking core 
model taking into account mass (1) and 
heat transfer effects (2). 

It is obvious that there is no analytical 
solution to the set of Eqs. (2)-(4). There 
is, however, a limiting case in which the 
treatment of these equations simplifies very 
much. This case arises when reactant A is 
consumed completely inside solid B at some 
distance from its outer surface. Provided 
some working hypotheses are introduced, 
it is possible to obtain an analytic solution 
for the consumption of the solid as a func- 
tion of time (3, 4). These assumptions are: 

(a) The just mentioned hypothesis of 
A consuming completely inside solid B. 
This consumption must take place in a dis- 

R R 

FIG. 1. General picture of the system. 
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tance 6 < L, where L is the characteristic 
length of the porous solid; 

(b) Irreversible y-order reaction with 
respect to A ; 

(c) A pseudo st.eady-state in Eqs. (2) 
and (4); 

(d) The initial condition is given by 
the time at which profiles of CA and cR are 
just developed; 

(e) For a given porous structure, there 
is a relationship between the surface area 
of B and its concentration; 

(f) There is a relationship between 
effective diffusivity and porosity, and 

(g) By assuming effective diffusivity 
and surface area of B are constant, a re- 
lationship between cn and cB is obtained for 
the isothermal case. For nonisothermal sys- 
tems, the Damkiihler’s analogy obt’ained 
with constant transport coefficients is also 
included in the development (5, 6). It is 
to be emphasized that this assumption of 
constancy of transport coefficients and sur- 
face area is only applied for this 
calculation. 

Taking into account t,hese hypotheses, 
Eq. (2) was integrated once by the Clairaut 
substitution to obtain the internal effec- 
tiveness factor (3, J), which can be written 
as follows : 

7; = h,+R*‘/h,,, (5) 

where h+ is a correction factor accounting 
for the effect of surface area and effective 
diffusivity variation inside the porous 
solid. In the nonisothermal case, it also ac- 
counts for the effect of temperature profiles 
on the effectiveness factor (6). The value 
of h* appears dependent on the porous 
structure model, but, independent on time 
since concentration profiles are repeated 
as solid is consumed (4,B). 

Furthermore, the mass balance equation 
of B was written in terms of the effective- 
ness factor and integrated to obtain the 
rate of consumption of B as a function of 
time (4, 6). It is seen that once the value 
of h- is provided, Eq. (2) is no longer used. 
h’evertheless, the assumption (g) used in 
this method introduces an error in the cal- 
culation of h*. 

The objective of this study is to calcu- 
late hi, neglecting that assumption of con- 
stancy of surface area and transport 
coefficients for the isothermal and the non- 
isothermal cases. In addition, that study 
will provide a knowledge of the system 
properties in the asymptotic region. 

EQUATIONS 

As has been shown for catalytic systems 
(7) in the asymptotic region of the effec- 
tiveness factor (high Thiele modulus), Eq. 
(2) can be written as that for slab geom- 
etry, provided a proper characteristic 
length is used in the Thiele modulus. Hence, 
Eq. (2) turns out to be 

By using the Clairaut substitution, Eq. 
(6) can be integrated once to obtain 

% = (~/DA) [ 2 II’^ Ddci]0”, (7) 

where the following boundary condition 
was used, 

CA = 0; d&J/& = 0 at z = 0. (8) 

The value of h+ for the asymptotic zone 
can be evaluated from Eq. (7) as has been 
shown elsewhere (4-6) : 

qi = 
[(Y + ~>/~](DA~/DA~)[(~cA*/~~*)~~~~~IR*’ 

= h+R*P/h,, (9) 

where 

h+ = [(T + 1) lo1 D~*r?*dcA*]~“, (10) 

and CA* = CA/CA~; Z* = Z/L; R* = R,/Ro; DA* 
= DA/DA,; r* = TA(u)/TA~(G). 

Assuming now that concentrat’ion pro- 
files are repeated in the partially reacted 
solid as time goes on, we can write 

DCB -= 
Dt 01) 

where dz,/dt is the velocity of the boundary 
bet’ween ash layer and reaction front. 

On the other hand, by writing a macro- 
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scopic balance for components A and B at 
the interface it follows that 

cnodx,/dt = - bDA,(dcJdz),. (12) 

From Eqs. (3), (7), (11) and (12) we 
obtain 

dcB/dz = -TACB~ 2 ‘Aa DArAdCA 
[/ 0 1 --O? (13) 

Eqs. (7) and (13) can be equated to give 

By introducing Eq. (10) in Eq. (14) and 
using dimensionless variables it follows 
that 

dCA*/dCB* = -2h+ 

x [(y + I)-’ /ge”* Dn*rA*dc~*]“‘5/Da*ra*. 

(15) 

Eq. (15) can also be written as follows; 

d [ (7 + 1) j0Ed* DA*TA*~cA*]“~ = -h+dCg*, 

(16) 

which can be transformed to 

(y + l)DA*TA*dCA* = -2(1 - cB*)h+*dcB*, 

(17) 

where the boundary condition cA* = 0 for 
63 ” = 1 has been used. 

As DA+ = DA* (c,+) and rA* = ra* (CA*, 
cBH) it will be necessary to separate the 
variables in order to simplify the evalua- 
tion of Eq. (17). 

The reaction rate can be written as 

rd* = k’*(CA*)CA%i*(CB*), (1s) 

where an irreversible y-order reaction has 
been considered and the general case of 
nonisothermal reaction was taken into ac- 
count by means of the function V*(C~‘) 
arising from Eqs. (2) and (4). 

By separating variables in Eqs. (17) and 
(lS), the following result is obtained: 

(y + l)k’*cA*‘dca* 
= - 2(h+*/DA*ai*)(l - CB*)dCB*. (19) 

The coefficient h+ can be evaluated from 
Eq. (19) by integration using the following 
boundary conditions: 

c** = 0; cB* = 1, and 
CA* = 1; cB* = 0. (20) 

(As a matter of fact the last boundary con- 
dition is not taking into account the ex- 
ternal surface area of the partially reacted 
solid). 

Hence, Eq. (19) yields 

h+ = 
(y + 1) 1’ k’*cA*YdcA* 

2 
/ 
o1 (DA*cL~*)-‘(1 - CB*)dCB* 

0.5 

1. 
(21) 

From Eq. (21) the value of h+ can be 
easily evaluated without knowing the re- 
lationship between ca* and cni ; this makes 
an important difference with the method 
outlined before. In that sense, the mathe- 
matical treatment which leads to Eq. (21) 
has the advantage of separating the cA* 
and cg* dependent variables in different 
integrals. As will be shown later this 
property provides a useful way to report 
data in both the isothermal and noniso- 
thermal cases. 

Furthermore, by integrating Eq. (19)) 
the cA+(ce+) relationship can be obtained 
as 

/ 0 
cede ~l*CA*7&A+ 

/ 0 
l k’*c/dCA’ 

/ 
lcB* (DA*ai*)-‘(1 - cB*)dc~* 

=- 

/ o1 (DATUM*)-‘(1 - CB*)dCB* 
. (22) 

For isothermal systems (P = 1) with 
the condition D,* = uin = 1 (assumption 
g) Eq. (22) yields as a particular case the 
relationship used in previous papers (4, 6). 

CA* = [l - CB*]217+1 (23) 

It is possible now to visualize how the 
variable coefficients k’“, DA* and ai* affect 
the relationship given by Eq. (22) as well 
as the value of h+ in Eq. (21). 
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ISOTHERMAL SYSTEMS 

For isothermal systems Ytt = 1 and Eqs. 
(21) and (22) turn out to 

hr+ = 2 o1 (1).4*ni*)-‘(l - Cg*)dCg*]-0.5) [/ 
(24) 

where the subscript I indicates the iso- 
thermal case, and 

s lcB* (D A*ai*)-l(l - CB*)dCU* 
CA* = - 

* 
/ o1 (D,*n,*)-‘(1 - cH*)dcB* 

(25) 

In order to evaluate the integrals of 
Eqs. (24) and (25), it is necessary to de- 
vclop the following relationships; 

* = ai*(cB*) and 
II:* = D.l*(c,j*). 

(26) 
(27) 

ai” (cB”>) relationship 

The ai’? (cui’) relationship depends on the 
pore structure model used to represent the 
solid reactant. As has been done elsewhere 
(4) three different models are used: 

(i) IXspersed-solid model, 

fli* zz (Co*)m; (28) 

(ii) Petersen model, 

(c&y + e(ui*)2 
+ gcl+*(l - Co)[cu*(l - EO) - I] = 0, (29) 

where 

t: = G2/(2G - 3) and 
g = (G - 1)2/~,,[(2G - 3)/313, (30) 

with 

4eoG3 - 27G + 27 = 0; (31) 

(iii) Pore-generation model, 

ui4 = 1 + (4 - l)(e - EO)/(L - EO) 
for E < c’, (32) 

and 

ai* = q 
for C 3 t’. (33) 

Dni’ ( ceX) relationship 
A phenomenological dependence of the 

effective diffusivity on porosity that has 
been observed for a great number of porous 
materials can be written as 

DA* = (~/eo))~, (34) 

where n varies from 1 to 3 (authors have 
used a value of n = 2 in previous studies 
(4) 1. 

Furthermore, the porosity can be evalu- 
at’ed through 

c = 1 - (c,~/c~J - (c,,,lb,j. (35) 

where the subscript t denotes the true den- 
sity of the solid. Eq. (35) can be written 
exclusively in terms of c,,” 

E = E, + Cn*(Eo - es). (36) 

Hence, by introducing Eq. (361 in Eq. 
(34) it follows, 

DA* = [t* + cu*(l - c*)lrr; (37) 

where 
e* Lzz Es/b. (38) 

From Eqs. (24), (28)) (29), (32), (33), 
and (37)) it can be seen that h,+ will depend 
on the porous structure model as well as on 
+ and n. However, it is to be emphasized 

that hl+ is independent upon reaction order 
or in general upon the chemical reaction 
kinetics provided a generalized Thiele 
modulus is used in Eq. (9). 

RESULTS 

As has been mentioned before, the value 
of hr+ or the cA* (cB’) relationship will de- 
pend on ai” and Da* profiles in the par- 
tially reacted solid. Since the integrals in 
Eqs. (24) and (25) arise from kinetic con- 
cepts, it is obvious that results will be in- 
fluenced by the way in which the mechanism 
of diffusion with simultaneous chemical re- 
action is affected by the profiles of ai* and 
Da++. The influence of ai” arises from the 
porous structure model under consideration. 

The correction factor hr+ was calculated 
from Eq. (24) and is plotted in Fig. 2 as 
a function of C* for the different porous 
structure models. Points show the values 
obtained and reported elsewhere (4) with 
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FIG. 2. Influence of E’ upon hr+ for different porous 
structure models. 

assumption (g). It is possible to observe 
that the values arising from this assump- 
tion are not too far from the curves coming 
out from Eq. (24) in all cases. 

‘On the other hand the influence of DA* 
on hr+ and the ca* (cB+) relationship will de- 
pend upon the value of E* and n. For E* = 1 
Eq. (37) yields D,” = 1 and there is not 
DA+ profile. In other words, as porosity is 
not changing with reaction the effective 
diffusivity remains constant. This effect 
can be observed in Fig. 3 where the correc- 
tion factor hr+ is plotted as a function of L+ 
for different values of n. The Petersen 
model for G, = 0.303 was considered here. 
Similar results were obtained for the dis- 
persed-solid model. From Fig. 3 it can be 
seen that the differences in hr+ are not great 
for usual values of E* (0.5 < E* < 2.0) 
showing a low sensibility of DA* on hr+. 
Hence, it can be concluded that for the 
isothermal case, errors are not too high 
when applying assumption (g) . However, as 
values of h,+ can be easily calculated from 
Eq. (24), the search for an analytical 
cA* (cB*) relationship is no longer important. 

NONISOTHERMAL SYSTEMS 

For nonisothermal systems the value of 
lY+ must be expressed in terms of CA* in 

FIG. 3. Influence of E* upon hr+ for Petersen model 
and different values of n. 

order to evaluate the integrals in Eqs. (21) 
and (22). 

In conventional catalytic systems, this 
relationship arises from the DamkBhler’s 
analogy (5) which relates temperature and 
gaseous composition within the porous 
solid through Eqs. (2) and (4). Such 
a treatment leads to the following 
relationship : 

k’* = exp {A$(1 - c~*)/[l + P(1 - CA*)]) 
(39) 

where Ar = E/R,T8 and ,L3 = DAo(-AH) 
c~,/x,,T,. However, this relationship was 
obtained assuming DA& and AH were con- 
stant. This is not the case for gas-solid 
systems ; hence, a new relationship Ic’” (CA+) 
must be developed. From Eqs. (2) and (4) 
we obtain 

DA(dca/d~) = -[A/(-AH)l(dT/dz), (40) 

where the following boundary conditions 
were used 

dcJdz = 0; dT/dz = 0, at z = 0. (41) 

By integrating Eq. (40) we obtain 

T-TT,= (-AH) c’ (DA/WA, (42) 

or, in dimensionless form 
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T* - 1 = p i;* (DA*/X*)&*, (43) 

where T” = T/T8 and A” = X/X0. 
Hence, Ic’* can be expressed as 

(44) 

k’* = exp 
lb-/3 l;+ (DA*/A*)~CA* 

1 + P C (DA*IX*WA* I 
. (45) 

For the particular case DA” = X” = 1, 
Eq. (45) reduces to Eq. (39). As D,” and 
X* are functions of ce* the solution of Eq. 
(45) requires an iterative method to be ap- 
plied together with Eq. (22) which will 
provide the necessary relationship between 
CA + and cB*. Once the iterative procedure 
is ended the correct relationship cA”(ce*) 
is obt,ained as well as the value of h+. How- 
ever, we need first to develop the relation- 
ship X* = X”(cB*) or X* = X*(C). 

For unconsolidated porous media the ex- 
pression developed by Kunii and Smith (8) 
can be used 

X/b = e + (1 - e)O.95/[4 + (2/3x)], (46) 

where x = Xs/XF, with Xs being the thermal 
conductivity of the solid phase and Xp that 
one of the fluid phase. In turn 

4 = 42 + cc&- &)(E - 0.260)/0.216 (48) 

$I and C& are plotted as a function of z 
(8). The dimensionless effective thermal 
conductivity h” can be evaluated from Eqs. 
(46) and (48) for given values of Q and co. 

On the other hand, for consolidated 
porous media we can use (9) 

x* = @s/x,)- = (x)fo-“. (49) 

It is now easy to evaluate both, the 
c..~‘* (cB*) relationship and the value of h+ 
for the nonisothermal system. We should 
remember that in a previous study (6) the 
nonisothermal h+ was calculated taking into 
account the influence of DA* and ai* pro- 
files as well as temperature gradients in 
the reactant solid but constant transport 
coefficients were assumed in the Dam- 
kiihler’s analogy when evaluating the re- 
lationship lc’* (ca”) (Eq. (39)). 

Hence, let us introduce a correction fac- 
tor defined as 

’ = h+ calculated with Eq. (39) 
hf calculated with Eq. (45). (50) 

From Eqs. (21), (39), and (45) it fol- 
lows that [ can be written as / o1 (cA*‘)[exp I]dcA* o’5 5= I o1 (cA*Y)[exp J&A* ’ 

where 

I= 
Af-0 f* (DA*/X*)dcA* 

1 + 0 l-* (h*/h’)dcA*’ 

and 

J = A?$(1 - CA*) 
1 + fl(1 - CA*) 

(51) 

(*53) 

(53) 

Hence, [ will depend upon 

[ = t(t*,n,Ar,P,r,y, porous structure model). 
(54) 

For isothermal systems [ = 1; for Z+ = 1 
as porosity is not changing with reaction, 
both transport coefficients are constant and 
again [ = 1. 

By introducing Eqs. (50) and (51) in 
Eq. (9) we obtain 

Vi = (E/h) 

I ,,l (c.i*)Y[exp J]dcA* o’5 

/ o1 (2/D A*&*) (1 - cs*)dcg* 
I 

X R**. (55) 

On the other hand, Eq. (9) for a catalytic 
system can be written as follows (D.,* = 
ai” = ASI Tz 1) : 

Tic = fur, P, r)ho 

where the subscript c denotes the catalytic 
case. In turn, from Eqs. (55) and (56) we 
obtain 

Vi = hi. (g/DA*ai*)(l - cB*)dcB*]-0’5 R** 

(57) 
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CA” 
FIG. 4. Relationship between CA* and CB* for 

Petersen model, AT = 40, e* = 1, and different 
values of p. 

On the other hand, by using Eq. (24) it 
follows 

Eq. (58) gives an important relationship 
since it allows the calculation of the non- 
isothermal effectiveness factor for a gas- 
solid reaction (with variable transport co- 
efficients and surface area) in terms of the 
catalytic effectiveness factor and two cor- 
rection factors, h,+ and 5. 

1 FIG. 5. Influence of 6 upon 5 for dispersed solid 
model, Ar = 20, E* = 0.67, z = 1000, and different 
values of Y. 

lfL---- I 1 
-06 -04 -02 0 02 0.4 0 G 

P 

FIG. 6. Influence of p upon t for dispersed solid 
model, AT = 20, y = 1, x = 1000, and different 
values of E*. 

RESULTS 

The cA* (cB*) relationship is shown in 
Fig. 4 for the Petersen model (r, = 
0.303)) E‘:> = 1, Ar = 40 and different values 
of 8. As eGF = 1, Eqs. (45) or (39) can be 
used wit’hout distinction. It can be seen 
that, for a given value of ceX, c~” decreases 
as the heat of reaction increases if the re- 
action is exothermic. The opposite effect is 
observed for endothermic reactions. 

Figures 5, 6, and i’ show the influence of 
different parameters upon the correction 
factor [ for the dispersed-solid model. We 

lo-IL _- I 1 
-0G -04 -0.2 0 0.2 0.4 0.G 

P 

FIG. 7. Influence of p upon t for dispersed solid 
model, E* = 1.5, y = 1, z = 1000, and different 
values of AT. 
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remember that, 6 = 1 for j? = 0 and/or 
’ = 1. The parameters ilr, /3, and es’ in- 

kencc directly upon [ through the 
Damk6hler’s analogy; on the other hand, 
the rciaction order 7 and the porous-struc- 
ture model influence upon [ through the 
cAi* jcJc”) relationship. 

Thr influence of p and 7 is shown in 
Fig. 5. It is seen that the parametric sen- 
sibility of 7 i,h not too high. 

The influence of ~3 and cr. is shown in 
Fig. 6. Bs ES’ modifies the transport coeffi- 
cients of the porous solid, its influence will 
be high for esothermic reactions as can be 
verified from Fig. 6. 

In the same way, t.he influence of AY is 
very high for exothermic reactions (Fig. 
7). The points shown in this figure cor- 
respond to the Petersen model. It is seen 
that the influrnce of the porous structure 
is very low. 

Furthermore, in the calculations involved 
in Figs. 5-7 a value of x = 1000 was used; 
calculations performed with 2 = 500 and 
z = 1500 showed the influence of 2 was 
negligible. 

The asymptotic effectiveness factor for 
a nonisothermal gas-solid reaction with 

variable coefficients can be written in terms 
of the nonisothermal catalytic effective- 
ness factor and two correction factors: the 
first one which accounts for the influence 
of effective diffusivity and surface area 
profiles in the isothermal case and is in- 
dependent on the reaction mechanism and 
the second one which accounts for the in- 
fluence of variable transport coefficients 
when reiating temperature and gaseous 
composition within the porous solid. 
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